Abstract
1. Axoplasm isolated from giant axons of the squid Loligo and of the polychaete worm Myxicola continues to bind Ca and maintain an ionized Ca concentration close to 0.1 microgram which is similar to that seen in intact axons. 2. Injection of Ca into isolated axoplasm only produces a transient rise in ionized Ca showing that axoplasm can buffer a Ca challenge. 3. In order to characterize the Ca-binding systems isolated axoplasm was placed in small dialysis tubes and exposed to a variety of artificial axoplasms containing 45Ca. 4. In the presence of ATP, orthophosphate and succinate, Ca uptake appreciable and after 4 hr exposure of Loligo axoplasm to 0.1 microgram-Ca, approximately 100 mumole Ca/kg axoplasm was bound. Binding could be divided operationally into two distinct processes, one that requires ATP or succinate togeth with orthophosphate and is blocked by cyanide and oligomyocin, and one that is unaffected by these reagents. 5. Energy-dependent binding has a large capacity, but a rather low affinity for Ca, being half-maximal between 20 and 60 microgram-Ca. In Loligo, its properties closely parallel those of a crude mitochondrial preparation isolated from axoplasm; but there are some interesting differences in Myxicola. Energy-independent binding is half-maximal at ionized Ca concentrations between 80 and 160 nM but is readily saturated and has a capacity of 6-60 mumole/kg axoplasm. 6. Ca binding by Loligo is greatest in media containing roughly physiological concentrations of K and is reduced by isosmotic replacement of K by Na. This effect seems to be confined to the energy-dependent, presumed mitochondrial, component of binding. 7. Ca binding by Loligo axoplasm is reduced by both La and Mn ions.