Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge
- 1 February 1984
- journal article
- research article
- Published by American Society for Microbiology in Applied and Environmental Microbiology
- Vol. 47 (2), 272-277
- https://doi.org/10.1128/aem.47.2.272-277.1984
Abstract
We investigated the anaerobic biodegradation of mono- and dichlorophenol isomers by fresh (unacclimated) sludge and by sludge acclimated to either 2-chlorophenol, 3-chlorophenol, or 4-chlorophenol. Biodegradation was evaluated by monitoring substrate disappearance and, in selected cases, production of 14CH4 from labeled substrates. In unacclimated sludge, each of the monochlorophenol isomers was degraded. The relative rates of disappearance were in this order: ortho greater than meta greater than para. For the dichlorophenols in unacclimated sludge, reductive dechlorination of the Cl group ortho to phenolic OH was observed, and the monochlorophenol compounds released were subsequently degraded. 3,4-Dichlorophenol and 3,5-dichlorophenol were persistent. Sludge acclimated to 2-chlorophenol cross-acclimated to 4-chlorophenol but did not utilize 3-chlorophenol. This sludge also degraded 2,4-dichlorophenol. Sludge acclimated to 3-chlorophenol cross-acclimated to 4-chlorophenol but not to 2-chlorophenol. This sludge degraded 3,4- and 3,5-dichlorophenol but not 2,3- or 2,5-dichlorophenol. The specific cross-acclimation patterns observed for monochlorophenol degradation demonstrated the existence of two unique microbial activities that were in turn different from fresh sludge. The sludge acclimated to 4-chlorophenol could degrade all three monochlorophenol isomers and 2,4- and 3,4-dichlorophenol. The active microbial population in this sludge appeared to be a mixture of populations present in the 2-chlorphenol- and 3-chlorophenol-acclimated sludges, both of which could utilize 4-chlorophenol. Experiments with 14C-radiolabeled p-chlorophenol, o-chlorophenol, and 2,4-dichlorophenol demonstrated that these compounds were converted to 14CH4 and 14CO2.This publication has 4 references indexed in Scilit:
- Anaerobic biodegradation of phenolic compounds in digested sludgeApplied and Environmental Microbiology, 1983
- Reductive metabolism of heptachlor, parathion, 4,4′-dichlorobenzophenone, and carbophenothion by rat liver systemsPesticide Biochemistry and Physiology, 1981
- Degradation of pentachlorophenol (PCP) in aerobic and anaerobic soilJournal of Environmental Science and Health, Part B, 1979
- Degradation of p, p′-DDT in Reducing EnvironmentsNature, 1974