Abstract
Rat soleus muscles were autografted from right to left legs, and regeneration following necrosis of all original myofibres was studied after 7 to 250 days. The best regenerates were from grafts replacing all calf muscles and sutured to the tendon stumps. After 30 days the size of such regenerates was equal to those from minced gastrocnemius muscles: the cross sectional area of muscle tissue was 30% (1.7 mm2) and the number of fibres was 180% (4500) of normal soleus muscles; the fibre diameters were 10 to 40 μm. To increase the number of myoblasts before grafting some muscles were injured by Ringer solution of 70° C and transplanted after 2 days. Nevertheless, this did not influence regeneration. After 7 days clusters of myotubes occurred in the periphery of the muscle. These myotubes originated from myoblasts growing like endothelial cells on the inner face of the persisting basal lamina tubes of necrotic fibres. After 30 days the muscles were vascularized. Fibres formed in a common basal lamina detached and so looked “split”. Satellite cells of new fibres came from undifferentiated cells associated with myotubes, i.e. from myoblasts. After 30 days and more regenerates contained three sorts of fibres. 1. Thin (5 to 20 μm) fibres resembling fetal muscle fibres. They were most prominent after 30 days, and probably not yet innervated. 2. Thin (10 μm) degenerating fibres as in long-time denervated muscles. 3. Thick (more than 30 μm) mature looking fibres which were innervated and revealed end-plates. Half of the grafts studied after 30 and 60 days contained unmyelinated and myelinated axons which had grown along strands of surviving Schwann cells. After 250 days, only two muscles were studied which both lacked innervation. Almost all regenerates contained muscle spindles, which, however, were not innervated. Within the persisting spindle capsules new muscle fibres had been formed from satellite cells of the former intrafusal fibres.