EGCG remodels mature α-synuclein and amyloid-β fibrils and reduces cellular toxicity

Abstract
Protein misfolding and formation of beta-sheet-rich amyloid fibrils or aggregates is related to cellular toxicity and decay in various human disorders including Alzheimer's and Parkinson's disease. Recently, we demonstrated that the polyphenol (-)-epi-gallocatechine gallate (EGCG) inhibits alpha-synuclein and amyloid-beta fibrillogenesis. It associates with natively unfolded polypeptides and promotes the self-assembly of unstructured oligomers of a new type. Whether EGCG disassembles preformed amyloid fibrils, however, remained unclear. Here, we show that EGCG has the ability to convert large, mature alpha-synuclein and amyloid-beta fibrils into smaller, amorphous protein aggregates that are nontoxic to mammalian cells. Mechanistic studies revealed that the compound directly binds to beta-sheet-rich aggregates and mediates the conformational change without their disassembly into monomers or small diffusible oligomers. These findings suggest that EGCG is a potent remodeling agent of mature amyloid fibrils.