Motor learning in man

Abstract
WE measured regional cerebral blood flow (rCBF) with positron emission tomography to study changes in anatomical structures during the course of learning a complicated finger sequence of voluntary movements. Motor learning was accompanied by rCBF increases in the cerebellum, decreases in all limbic and paralimbic structures, and striatal decreases which changed to striatal increases as the motor skill was learned. Simultaneously, activations of initially contributing non-motor parts of the cerebral cortex vanished. Both cerebellar circuits and striatal circuits appear important for the storage of motor skills in the brain.