Crystal Structure of Glycine N-Methyltransferase from Rat Liver,
- 1 January 1996
- journal article
- research article
- Published by American Chemical Society (ACS) in Biochemistry
- Vol. 35 (37), 11985-11993
- https://doi.org/10.1021/bi961068n
Abstract
Glycine N-methyltransferase (GNMT) from rat liver is a tetrameric enzyme with 292 amino acid residues in each identical subunit and catalyzes the S-adenosylmethionine (AdoMet) dependent methylation of glycine to form sarcosine. The crystal structure of GNMT complexed with AdoMet and acetate, a competitive inhibitor of glycine, has been determined at 2.2 A resolution. The subunit of GNMT forms a spherical shape with an extended N-terminal region which corks the entrance of active site of the adjacent subunit. The active site is located in the near center of the spherical subunit. As a result, the AdoMet and acetate in the active site are completely surrounded by amino acid residues. Careful examination of the structure reveals several characteristics of GNMT. (1) Although the structure of the AdoMet binding domain of the GNMT is very similar to those of other methyltransferases recently determined by X-ray diffraction method, an additional domain found only in GNMT encloses the active site to form a molecular basket, and consequently the structure of GNMT looks quite different from those of other methyltransferases. (2) This unique molecular structure can explain why GNMT can capture folate and polycyclic aromatic hydrocarbons. (3) The unique N-terminal conformation and the subunit structure can explain why GNMT exhibits positive cooperativity in binding AdoMet. From the structural features of GNMT, we propose that the enzyme might be able to capture yet unidentified molecules in the cytosol and thus participates in various biological processes including detoxification of polycyclic aromatic hydrocarbons. In the active site, acetate binds near the S-CH3 moiety of AdoMet. Simple modeling indicates that the amino group of the substrate glycine can be placed close to the methyl group of AdoMet within 3.0 A and form a hydrogen bond with the carboxyl group of Glu15 of the adjacent subunit. On the basis of the ternary complex structure, the mechanism of the methyl transfer in GNMT has been proposed.Keywords
This publication has 10 references indexed in Scilit:
- Universal Catalytic Domain Structure of AdoMet-dependent MethyltransferasesJournal of Molecular Biology, 1995
- Hepatic one-carbon metabolism in early folate deficiency in ratsBiochemical Journal, 1993
- PROCHECK: a program to check the stereochemical quality of protein structuresJournal of Applied Crystallography, 1993
- A combined isotropic and multiple s-shell anisotropic scaling method for multiple data setsJournal of Applied Crystallography, 1992
- The structure of 6-phosphogluconate dehydrogenase refined at 2.5 Å resolutionActa crystallographica Section B, Structural science, crystal engineering and materials, 1991
- An automatic diffraction data collection system with an imaging plateJournal of Applied Crystallography, 1990
- TOM: a FRODO subpackage for protein-ligand fitting with interactive energy minimizationJournal of Molecular Graphics, 1987
- Rat glycine methyltransferase. Complete amino acid sequence deduced from a cDNA clone and characterization of the genomic DNAEuropean Journal of Biochemistry, 1987
- Free atom insertion and refinement as a means of extending and refining phasesMethods in Enzymology, 1985
- Allosteric proteins and cellular control systemsJournal of Molecular Biology, 1963