Glucose sensors based on enzyme immobilization onto biocompatible membranes obtained by radiation-induced polymerization

Abstract
Amperometric glucose biosensors based on glucose oxidase immobilized onto poly(2-hydroxyethylmethacrylate) membranes obtained by γ radiation-induced polymerization were constructed. In a threeelectrode configuration, smooth or platinized platinum electrodes with different shapes were used, in order to detect the amount of hydrogen peroxide produced in the glucose oxidation. A saturated calomel electrode and a platinum foil were used as a reference and counterelectrode, respectively. The biocompatible obtained sensors were characterized as regards the temperature effect, the response, and lifetime. The determination of glucose in standard solutions was carried out, and linear calibration curves were obtained. Depending on the electrode configuration, the sensor had a response time of 1–4 min, and the measuring range extended from 5 × 10−5 to 4 × 10−3M.