Effect of Reservoir Heterogeneity on Improved Shale Oil Recovery by CO2 Huff-n-Puff

Abstract
An equation-of-state based compositional reservoir simulator, UT-COMP, is used to simulate the improved oil recovery by CO2 huff-n-puff in a shale matrix typical of the Bakken Formation. Non-aqueous components are carefully lumped into seven pseudo components. Permeability fields with various heterogeneity and correlation lengths are generated. UT-COMP is able to solve the compositional model, despite the permeability difference between the fracture and matrix being six orders of magnitude. Multiple cycles of CO2 huff-n-puff are simulated and compared with production by primary depressurization. The oil is first contact miscible with the injected CO2 under the reservoir pressure. Simulations show that primary recovery outperforms CO2 huff-n-puff in an ideally homogenous reservoir because injected CO2 moves deep into the reservoir without much increase in near-well pressure, while CO2 huff-n-puff outperforms primary recovery if there exists a low-permeability region which keeps CO2 in the near-well bore injection region. In the latter case, the final recovery using CO2 huff-n-puff is higher than that from primary depressurization; the recovery in a single cycle is about 3.3%, which increases to 3.5% in about 3 cycles. The recovery factor after 1000 days by primary depressurization with production pressure of 1000 psi is 11.6%, which is in agreement with existing studies. The recovery increase can be fit by a two-parameter exponential function and the rate coefficient is found to be insensitive to correlation length, while depends mainly on reservoir heterogeneity. A linear relationship between heterogeneity and rate coefficient is obtained. This work is the first to investigate the effect of heterogeneity on improved hydrocarbon recovery by CO2 huff-n-puff, and will be valuable in understanding the coupling between shale properties and oil recovery.