Structural Basis for Coevolution of a Human Immunodeficiency Virus Type 1 Nucleocapsid-p1 Cleavage Site with a V82A Drug-Resistant Mutation in Viral Protease
Open Access
- 15 November 2004
- journal article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 78 (22), 12446-12454
- https://doi.org/10.1128/jvi.78.22.12446-12454.2004
Abstract
Maturation of human immunodeficiency virus (HIV) depends on the processing of Gag and Pol polyproteins by the viral protease, making this enzyme a prime target for anti-HIV therapy. Among the protease substrates, the nucleocapsid-p1 (NC-p1) sequence is the least homologous, and its cleavage is the rate-determining step in viral maturation. In the other substrates of HIV-1 protease, P1 is usually either a hydrophobic or an aromatic residue, and P2 is usually a branched residue. NC-p1, however, contains Asn at P1 and Ala at P2. In response to the V82A drug-resistant protease mutation, the P2 alanine of NC-p1 mutates to valine (AP2V). To provide a structural rationale for HIV-1 protease binding to the NC-p1 cleavage site, we solved the crystal structures of inactive (D25N) WT and V82A HIV-1 proteases in complex with their respective WT and AP2V mutant NC-p1 substrates. Overall, the WT NC-p1 peptide binds HIV-1 protease less optimally than the AP2V mutant, as indicated by the presence of fewer hydrogen bonds and fewer van der Waals contacts. AlaP2 does not fill the P2 pocket completely; PheP1′ makes van der Waals interactions with Val82 that are lost with the V82A protease mutation. This loss is compensated by the AP2V mutation, which reorients the peptide to a conformation more similar to that observed in other substrate-protease complexes. Thus, the mutant substrate not only binds the mutant protease more optimally but also reveals the interdependency between the P1′ and P2 substrate sites. This structural interdependency results from coevolution of the substrate with the viral protease.Keywords
This publication has 69 references indexed in Scilit:
- How does a symmetric dimer recognize an asymmetric substrate? a substrate complex of HIV-1 proteaseJournal of Molecular Biology, 2000
- Refinement of Macromolecular Structures by the Maximum-Likelihood MethodActa Crystallographica Section D-Biological Crystallography, 1997
- [20] Processing of X-ray diffraction data collected in oscillation modeMethods in Enzymology, 1997
- Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density functionActa Crystallographica Section A Foundations of Crystallography, 1995
- The CCP4 suite: programs for protein crystallographyActa Crystallographica Section D-Biological Crystallography, 1994
- Shape Complementarity at Protein/Protein InterfacesJournal of Molecular Biology, 1993
- STRUCTURE-BASED INHIBITORS OF HIV-1 PROTEASEAnnual Review of Biochemistry, 1993
- Fidelity of HIV-1 reverse transcriptase copying RNA in vitroBiochemistry, 1992
- Comparison of the HIV‐1 and HIV‐2 proteinases using oligopeptide substrates representing cleavage sites in Gag and Gag‐Pol polyproteinsFEBS Letters, 1991
- CHAIN — A crystallographic modeling programJournal of Molecular Graphics, 1988