STUDY OF PHASE PROPAGATION IN SUPERCONDUCTING ALUMINUM BY ULTRASONIC ATTENUATION MEASUREMENTS

Abstract
The phase propagation in superconducting aluminum has been studied by measuring the time rate of change of ultrasonic attenuation. The time taken for the destruction of the superconducting phase in a cylindrical specimen, by means of a magnetic field, H, greater than the critical field, Hc, is approximately proportional to{H/(H–Hc)} in agreement with eddy-current theory. In the converse case, where the superconducting phase is restored by switching off the magnetic field H (>Hc), the total time taken is nearly independent of the temperature (or Hc) as well as H. The superconducting phase grows at a non-uniform volume rate which is considerably less than the uniform rate of collapse.