Abstract
A cyclic AMP-dependent nuclear protein kinase was found to be closely associated with rat liver nucleolar RNA polymerase I throughout most of its purification. This protein kinase was purified to near homogeneity. It exhibits a number of unusual catalytic properties, including the inability to utilize Mn2+ when RNA polymerase is the substrate and the ability to phosphorylate both acidic and basic substrates. Phosphorylation of RNA polymerase I by this protein kinase results in the formation of phosphoester bonds characteristic of phosphoserine and phosphothreonine. Radioautography of polyacrylamide-gel electrophoretograms of the phosphorylated RNA polymerase I revealed that the 32P was located primarily on enzyme subunits SA1, SA3, SA5 and SA6.