Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene

Abstract
We have constructed a strain of Saccharomyces cerevisiae with a deletion of the YKL510 open reading frame, which was initially identified in chromosome XI as a homolog of the RAD2 nucleotide excision repair gene (A. Jacquier, P. Legrain, and B. Dujon, Yeast 8:121-132, 1992). The mutant strain exhibits increased sensitivity to UV light and to the alkylating agent methylmethane sulfonate but not to ionizing radiation. We have renamed the YKL510 open reading frame the RAD27 gene, in keeping with the accepted nomenclature for radiation-sensitive yeast mutants. Epistasis analysis indicates that the gene is in the RAD6 group of genes, which are involved in DNA damage tolerance. The mutant strain also exhibits increased plasmid loss, increased spontaneous mutagenesis, and a temperature-sensitive lethality whose phenotype suggests a defect in DNA replication. Levels of the RAD27 gene transcript are cell cycle regulated in a manner similar to those for several other genes whose products are known to be involved in DNA replication. We discuss the possible role of Rad27 protein in DNA repair and replication.