Phosphoenolpyruvate-dependent phosphotransferase system. Proton NMR studies on chemically modified heat-stable proteins

Abstract
The low-pK tyrosyl residue present in the heat-stable proteins (HPr) of all Gram-positive bacteria studied until now has been labeled by tetranitromethane in the HPr of Bacillus subtilis and Streptococcus faecalis. The nitrotyrosyl derivatives obtained are fully active in the complementation assay. The labeled tyrosyl residues could be identified as Tyr-37 in both proteins. Reinvestigation of the low-pK tyrosyl residue in HPr of Staphylococcus aureus resulted in the same assignment. In all three proteins an interaction between nitrotyrosine-37 and the active center His-15 could be observed, leading to an increase in the pK of His-15 and a change of its chemical shift parameters. The 1H NMR lines of the complete aromatic spin system of HPr of B. subtilis could be assigned by the nitration studies. Labeling of Arg-17 in HPr of S. aureus and S. faecalis by 1,2-cyclohexanedione in the presence of borate ions causes an almost complete inhibition of its enzymatic activity. In the NMR spectrum the labeling of the arginyl residue influences the resonance lines of His-15: two new resonance lines for the C-2 protons of equal intensity are observed, a fact that could be explained by two different conformations in slow exchange. The pK value of His-15 was not changed by the labeling, excluding Arg-17 as responsible for the low pK of His-15.

This publication has 11 references indexed in Scilit: