Abstract
Mammalian proteins expressed in Escherichia coli are used in a variety of applications. A major drawback in producing eukaryotic proteins in E.coli is that the bacteria lack most eukaryotic post-translational modification systems, including serine/threonine protein kinase(s). Here we show that a eukaryotic protein can be phosphorylated in E.coli by simultaneous expression of a mammalian protein kinase and its substrate. We show that in bacteria expressing SRPK1, ASF/SF2 becomes phosphorylated to a degree resembling native ASF/SF2 present in interphase HeLa cell nuclei. The E.coli phosphorylated ASF/SF2 is functional in splicing and, contrary to the unphosphorylated protein, soluble under native conditions.