Abstract
Permanent magnet synchronous machines generate parasitic torque pulsations owing to distortion of the stator flux linkage distribution, variable magnetic reluctance at the stator slots, and secondary phenomena. The consequences are speed oscillations which, although small in magnitude, deteriorate the performance of the drive in demanding applications. The parasitic effects are analyzed and modeled using the complex state-variable approach. A fast current control system is employed to produce high-frequency electromagnetic torque components for compensation. A self-commissioning scheme is described which identifies the machine parameters, particularly the torque ripple functions which depend on the angular position of the rotor. Variations of permanent magnet flux density with temperature are compensated by on-line adaptation. The algorithms for adaptation and control are implemented in a standard microcontroller system without additional hardware. The effectiveness of the adaptive torque ripple compensation is demonstrated by experiments.

This publication has 10 references indexed in Scilit: