Structural and transcriptional features of the mouse spermatid genome.
Open Access
- 1 May 1975
- journal article
- Published by Rockefeller University Press in The Journal of cell biology
- Vol. 65 (2), 258-270
- https://doi.org/10.1083/jcb.65.2.258
Abstract
A whole-mount electron microscope technique has allowed direct visualization of the transcription process in mouse spermatids. Thes observations have been supported by light and electron microscope autoradiographic techniques that employ [3H]uridine and [3H]arginine in attempts to clarify mechanisms of RNA synthesis and their relationship to nuclear histone changes throughout spermiogenesis. Early spermatid genomes are dispersed almost completely, whereas in later spermiogenic steps the posterior or flagellar nuclear region is readily dispersed and the anterior or subacrosomal nuclear region remains compact. Display of genome segments permits identification of regions where transcription complexes, presumably heterogeneous nuclear RNA species, are seen related to chromatin. These complexes appear as ribonucleoprotein chains, some of them of considerable length, decreasing progressively in number in late spermiogenic steps. This decrease coincides with diminishing rates of [3H]uridine incorporation. Two distinct patterns of chromatin have been identified: a beaded chromatin type associated with transcription complexes encounterd in early spermatids; and a smooth chromatin type not involved in transcriptive activity observed in advanced spermiogenic genomes. Protein particles staining densely with phosphotungstic acid become apparent in nuclei of spermatids after [3H]arginine incorporation becomes significant. There is no structural or autoradiographic evidence for the presence of nucleoli during spermiogenesis. From these data and from previous experimental findings, we conclude that: (a) spermatogonia, spermatocytes and Sertoli cells are transcriptionally expressed into heterogeneous nuclear RNA and preribosomal RNA species whereas transcription in spermatids is predominantly heterogeneous nuclear RNA; and (b) the modification of the chromatin patterns in late spermiogenic steps indicates a stabilized genome that restricts transcriptive functions.Keywords
This publication has 33 references indexed in Scilit:
- Haemodynamic and coronary vascular responses after beta-adrenoceptor blockade in the anaesthetised dog: a comparison of tolamolol with practolol and propranolol.1974
- Spheroid Chromatin Units (ν Bodies)Science, 1974
- MORPHOLOGICAL STUDIES OF TRANSCRIPTIONActa Endocrinologica, 1972
- Stereochemistry of actinomycin binding to DNAJournal of Molecular Biology, 1972
- Binding of Tritiated Actinomycin and Cell DifferentiationNature, 1969
- THE REACTIVITY AND STAINING OF TISSUE PROTEINS WITH PHOSPHOTUNGSTIC ACIDThe Journal of cell biology, 1969
- Protein transformations during differentiation of trout testis.1969
- Autoradiographic evidence of a nuclear histone synthesis during mouse spermiogenesis in the absence of detectable quantities of nuclear ribonucleic acidExperimental Cell Research, 1964
- A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewalJournal of Anatomy, 1956
- STUDIES ON THE FINE STRUCTURE OF THE MAMMALIAN TESTISThe Journal of cell biology, 1955