Phosphorylation of the Multidrug Resistance Encoded Protein P190

Abstract
Recent studies suggest that multidrug resistance of HL60/ADR cells is related to an overexpression of the MRP (multidrug resistance associated protein) gene which encodes a 190-kDa ATP-binding membrane glycoprotein. In the present study we have further characterized P190 and have examined phosphorylation properties of the protein. The results demonstrate that P190 is highly phosphorylated and that the phosphate groups are metabolically active and undergo cycles of phosphorylation and dephosphorylation in the cell. Serine is the single amino acid phosphorylated in P190 and the phosphate groups are contained in nine tryptic peptides. Experiments have also been conducted to analyze the effect of various protein kinase inhibitors on phosphorylation levels of P190. The results show that H-7, staurosporine, and chelerythrine can reduce the phosphorylation of this protein. In the presence of both H-7 (200 microM) and staurosporine (200 nM) the phosphorylation of P190 is completely blocked. It has also been found that in the presence of these agents there is a major increase in drug accumulation and concomitant inhibition in drug efflux of resistant cells. These results therefore suggest the possibility that certain phosphate groups of protein P190 play an important role in modulating drug accumulation in resistant cells.