Low-Reynolds-number effects on near-wall turbulence

Abstract
Direct numerical simulations of a fully developed turbulent channel flow for two relatively small values of the Reynolds number are used to examine its influence on various turbulence quantities in the near-wall region. The limiting wall behaviour of these quantities indicates important increases in the r.m.s. value of the wall pressure fluctuations and its derivatives, the r.m.s. streamwise vorticity and in the average energy dissipation rate and the Reynolds shear stress. If the normalization is based on the wall shear stress and the kinematic viscosity, these changes are shown to be consistent with an increase in strength – but not the average diameter or average location – of the quasi-streamwise vortices in the buffer region. Evidence of this strengthening is provided by the increased sum of the stretching terms for the meansquare streamwise vorticity. It is also shown that a normalization based on Kolmogorov velocity and lengthscales, defined at the wall, is more appropriate in the near-wall region than scaling on the wall shear stress and kinematic viscosity.

This publication has 1 reference indexed in Scilit: