• 1 January 1975
    • journal article
    • Vol. 27 (1), 1-30
Abstract
In this paper we present the results of blood group typings for a total of 33 villages distributed among five South American Indian tribes--Yanomama (21 villages), Makiritare (eight villages), Macushi (two villages), Piaroa (one village), and Wapishana (one village). These new results for the Yanomama and Makiritare tribes have been combined with those previously reported to allow a better appreciation of the distribution of allelic frequencies in the tribes. The relationship of the Yanomama to other South American Indian tribes is investigated using data on six polymorphic loci (Rh, MNS, Fy, Jk, Di, Hp). By use of four genetic measures (two of genetic relationship and two of genetic diversity), we demonstrate that the Yanomama are genetically unique among a sample of 20 South American tribes. In addition, the Yanomama show somewhat less genetic diversity for the six loci analyzed than the average South American tribe. Taken together, these results indicate a rather long period of isolation for the population antecedent to the Yanomama--perhaps since the time of entry of man into the South American continent. The pattern of genetic relationships and genetic diversity for the 20 tribes is consistent with the hypothesis that evolution in South America proceeded by a process of fission-fusion leading to isolation of subpopulations with subsequent genetic differentiation as a consequence of population isolation. The uniqueness of the Yanomama appears to stem entirely from such a process, there being no evidence of any selective differential for the loci analyzed.