Abstract
Smoluchowski's equations for the coagulation of uncharged aerosol particles were programmed for solution by electronic computer. Terms representing differential sedimentation, turbulence, and mean aggregate density in solid aerosols were included. The effect of heterogeneity in the particle-size distribution of the aerosols on their rate of coagulation was illustrated by means of a slip-corrected coagulation factor Fc, which assumes a value of unity in all non-turbulent homogeneous aerosols. Curves of Fc vs. σg, the geometrical standard deviation, were calculated for aerosols of various mean particle-size. The effects due to turbulence, and to differential sedimentation, were illustrated in a similar manner. It was also found that the process of coagulation gives rise to a degree of dispersion which is independent of the original dispersion parameter, and depends only slightly on the mean particle-size of the aerosol over a wide range of particle-sizes. In the particle-size range in which differential sedimentation is inappreciable, the relatively constant value of the dispersion parameter implies that heterogeneous aerosols must obey the simplified integrated form of Smoluchowski's equation, which is applicable to homogeneous aerosols. The coagulation constant exceeds that predicted by the simple theory by about 10% for liquid aerosols of 0.1 μ or less.

This publication has 2 references indexed in Scilit: