An Evaporation Model for Formation of Carbonates in the ALH84001 Martian Meteorite

Abstract
Small, discoid globules and networks of magnesium-iron-calcium carbonates occur within impact-produced fracture zones in the ALH84001 Martian meteorite. Because these carbonates contain or are associated with the hydrocarbons, single-domain magnetite and iron-sulfide grains, and purported microfossils that collectively have been cited as evidence for ancient Martian life, it is critically important to understand their formation. Previous hypotheses for the origin of the carbonates involve either alteration of the rock by hydrothermal fluids at relatively low temperatures, or formation from a CO2-rich vapor at high temperatures. This paper explores an alternative mechanism–direct precipitation from a ponded evaporating brine infiltrating into fractures in the floor of an impact crater. Such a model can be reconciled with the observed carbonate compositional zoning and extreme stable-isotopic fractionations. If the carbonates formed in this manner, this removes a possible obstacle to the proposed existence of microbial remains in ALH84001; however, the cited evidence for life can be better explained by inorganic processes expected from brines in an evaporating alkaline lake, with an overprint of shock metamorphism and subsequent contamination by organic matter after falling to Earth.