Release of norepinephrine from brain vesicular preparations: Effects of an adenylate cyclase activator, forskolin, and a phosphodiesterase inhibitor

Abstract
1. The calcium-dependent K+-evoked release of [3H]norepinephrine from guinea pig cerebral cortical vesicular preparations is inhibited by norepinephrine, clonidine, and epinephrine. Isoproterenol has no effect and phentolamine prevents the inhibition by norepinephrine. The results indicate that anα-adrenergic receptor mediates an inhibitory input to the calcium-dependent release process. The inhibition by norepinephrine is prevented by high concentrations (3.0 mM) of calcium ions. 2. A cyclic AMP phosphodiesterase inhibitor, ZK 62771, slightly elevates [3H]cyclic AMP levels in the guinea pig cerebral cortical preparation and potentiates the marked elevation of [3H]cyclic AMP elicited by the adenylate cyclase activator, forskolin. 3. Neither ZK 62771 nor forskolin alone has significant effects on K+-evoked release of [3H]norepinephrine from the cerebral cortical vesicular preparation; however, a combination of ZK 62771 and forskolin inhibits K+-evoked release by as much as 60%. The inhibition is reversed by high concentrations (2.0 mM) of calcium ions. The results suggest that a marked accumulation of cyclic AMP elicited via both activation of adenylate cyclase and inhibition of phosphodiesterase can be inhibitory to neurotransmitter release from central synaptic terminals.

This publication has 28 references indexed in Scilit: