High-Riter Bicistronic Retroviral Vectors Employing Foot-and-Mouth Disease Virus Internal Ribosome Entry Site

Abstract
Bicistronic retroviral vectors were constructed containing the foot-and-mouth disease virus (FMDV) internal ribosome entry site (IRES) followed by the coding region of beta-galactosidase (beta-gal) or therapeutic genes, with the selectable neomycin phosphotransferase gene under the control of the viral long terminal repeat (LTR) promoter. LNFX, a vector with a multiple cloning site 3' to foot-and-mouth disease virus IRES, was used to construct vectors encoding rat erythropoietin (EP), rat granulocyte colony-stimulating factor (G-CSF), human adenosine deaminase (ADA) and beta-gal. In transduced primary rat vascular smooth muscle cells the cytokines were expressed at high levels, similar to those obtained from vectors employing the viral LTR promoter. LNFZ, a vector encoding beta-gal, had a 10-fold increase in titer over that of LNPoZ, a comparable vector containing the poliovirus (Po) internal ribosome entry site. Primary canine vascular smooth muscle cells infected with LNFZ and LNPoZ expressed similar activities of beta-gal and neomycin phosphotransferase (NPT). Overall, these vectors had titers between 10(6) and 2 x 10(7) c.f.u./ml, indicating that foot-and-mouth disease virus IRES provides high-titer bicistronic vectors with high-level two gene expression.