Expression of Caveolin-1 Induces Premature Cellular Senescence in Primary Cultures of Murine Fibroblasts
Open Access
- 1 July 2002
- journal article
- Published by American Society for Cell Biology (ASCB) in Molecular Biology of the Cell
- Vol. 13 (7), 2502-2517
- https://doi.org/10.1091/mbc.01-11-0529
Abstract
Caveolae are vesicular invaginations of the plasma membrane. Caveolin-1 is the principal structural component of caveolae in vivo. Several lines of evidence are consistent with the idea that caveolin-1 functions as a “transformation suppressor” protein. In fact, caveolin-1 mRNA and protein expression are lost or reduced during cell transformation by activated oncogenes. Interestingly, the human caveolin-1 gene is localized to a suspected tumor suppressor locus (7q31.1). We have previously demonstrated that overexpression of caveolin-1 arrests mouse embryonic fibroblasts in the G0/G1 phase of the cell cycle through activation of a p53/p21-dependent pathway, indicating a role of caveolin-1 in mediating growth arrest. However, it remains unknown whether overexpression of caveolin-1 promotes cellular senescence in vivo. Here, we demonstrate that mouse embryonic fibroblasts transgenically overexpressing caveolin-1 show: 1) a reduced proliferative lifespan; 2) senescence-like cell morphology; and 3) a senescence-associated increase in β-galactosidase activity. These results indicate for the first time that the expression of caveolin-1 in vivo is sufficient to promote and maintain the senescent phenotype. Subcytotoxic oxidative stress is known to induce premature senescence in diploid fibroblasts. Interestingly, we show that subcytotoxic level of hydrogen peroxide induces premature senescence in NIH 3T3 cells and increases endogenous caveolin-1 expression. Importantly, quercetin and vitamin E, two antioxidant agents, successfully prevent the premature senescent phenotype and the up-regulation of caveolin-1 induced by hydrogen peroxide. Also, we demonstrate that hydrogen peroxide alone, but not in combination with quercetin, stimulates the caveolin-1 promoter activity. Interestingly, premature senescence induced by hydrogen peroxide is greatly reduced in NIH 3T3 cells harboring antisense caveolin-1. Importantly, induction of premature senescence is recovered when caveolin-1 levels are restored. Taken together, these results clearly indicate a central role for caveolin-1 in promoting cellular senescence and they suggest the hypothesis that premature senescence may represent a tumor suppressor function mediated by caveolin-1 in vivo.Keywords
This publication has 72 references indexed in Scilit:
- Loss of functional caveolae during senescence of human fibroblastsJournal of Cellular Physiology, 2001
- Limb-girdle Muscular Dystrophy (LGMD-1C) Mutants of Caveolin-3 Undergo Ubiquitination and Proteasomal DegradationPublished by Elsevier ,2000
- Up-regulation of Caveolin Attenuates Epidermal Growth Factor Signaling in Senescent CellsJournal of Biological Chemistry, 2000
- Apoptosis or senescence-like growth arrest: influence of cell-cycle position, p53, p21 and bax in H2O2 response of normal human fibroblastsBiochemical Journal, 2000
- Interaction of a Receptor Tyrosine Kinase, EGF-R, with CaveolinsJournal of Biological Chemistry, 1997
- Different Kinetics of Senescence in Human Fibroblasts and Peritoneal Mesothelial CellsExperimental Cell Research, 1997
- Localization of Epidermal Growth Factor-stimulated Ras/Raf-1 Interaction to Caveolae MembraneJournal of Biological Chemistry, 1996
- Identification, sequence, and expression of caveolin-2 defines a caveolin gene family.Proceedings of the National Academy of Sciences, 1996
- Molecular Cloning of Caveolin-3, a Novel Member of the Caveolin Gene Family Expressed Predominantly in MuscleJournal of Biological Chemistry, 1996
- Specific Association of Human Telomerase Activity with Immortal Cells and CancerScience, 1994