Vibration isolation for scanning tunneling microscopy

Abstract
Vibration isolation technology for scanning tunneling microscopy(STM) to suppress the external mechanical perturbation down to a subatomic scale is described. The system is simplified into two subsystems, a tunneling assembly and a supporting table. Each of them has its own mechanical eigenfrequency. The principle of the isolation exists in making the two eigenfrequencies very different from each other. A theory of isolation developed is based on a model of multiply coupled oscillators with damping. Experimental results of the isolation characteristics for the two types of isolators constructed, one consisting of two‐stage coil springs and the other of multiply stacked metal plates with rubber pieces among them, are well explained by the theory. STM images of graphite are obtained by using these isolators combined with various tunneling assemblies. Thereby the basis for design of the isolators is clarified.