Evaluating Enzymes That Generate Genotoxic Benzo[a]pyrene Metabolites Using Sensor Arrays

Abstract
Arrays with individually addressable, demountable electrodes coated with ultrathin DNA/enzyme films were evaluated to estimate relative rates of genotoxic bioactivation of benzo[a]pyrene (BP) for several different enzymes simultaneously. Specifically, cytochrome (cyt) P450cam, cyt P40 1A2, and myoglobin in the array were activated with H2O2 to metabolize BP to genotoxic metabolites. DNA damage by the metabolites was detected by increases in square wave voltammetric oxidation peaks using Ru(bpy)32+ as catalyst. Cyt P450cam and cyt P450 1A2 showed 3-fold higher activity for genotoxic bioactivation of BP than myoglobin. The ability of the arrays to generate and detect metabolite-based DNA damage simultaneously for several enzymes is a rapid and promising approach to identify and characterize enzymes involved in genotoxicity of drugs and pollutants.