Symplectic connections and the linearisation of Hamiltonian systems
- 1 January 1991
- journal article
- Published by Cambridge University Press (CUP) in Proceedings of the Royal Society of Edinburgh: Section A Mathematics
- Vol. 117 (3-4), 329-380
- https://doi.org/10.1017/s030821050002477x
Abstract
This paper uses symplectic connections to give a Hamiltonian structure to the first variation equation for a Hamiltonian system along a given dynamic solution. This structure generalises that at an equilibrium solution obtained by restricting the symplectic structure to that point and using the quadratic form associated with the second variation of the Hamiltonian (plus Casimir) as energy. This structure is different from the well-known and elementary tangent space construction. Our results are applied to systems with symmetry and to Lie–Poisson systems in particular.Keywords
This publication has 23 references indexed in Scilit:
- Nonlinear stability analysis of stratified fluid equilibriaPhilosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1986
- The structure of the space of solutions of Einstein's equations II: several Killing fields and the Einstein-Yang-Mills equationsAnnals of Physics, 1982
- The global existence of Yang-Mills-Higgs fields in 4-dimensional Minkowski spaceCommunications in Mathematical Physics, 1982
- The structure of the solution set for the Yang-Mills equationsMathematical Proceedings of the Cambridge Philosophical Society, 1981
- Connections on symplectic manifolds and geometric quantizationPublished by Springer Nature ,1980
- Déformation du crochet de poisson sur une variété symplectiqueCommentarii Mathematici Helvetici, 1975
- Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaitsAnnales de l'institut Fourier, 1966
- Foundations of Differential Geometry, Volume I.The American Mathematical Monthly, 1965
- Affine Zusammenhänge auf Mannigfaltigkeiten mit fast-symplektischer StrukturCommentarii Mathematici Helvetici, 1962
- Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifoldTransactions of the American Mathematical Society, 1955