Kinetics and thermodynamics of calcium-induced lateral phase separations in phosphatidic acid-containing bilayers

Abstract
The effects of calcium on the mixing of synthetic diacylphosphatidylcholines (PC''s) and diacylphosphatidylethanolamines (PE''s) with the corresponding phosphatidic acids (PA''s) have been examined by high-sensitivity differential scanning calorimetry and by measurements of the fluorescence of labeled PA or PC species in PA-PC bilayers. Calorimetrically derived phase diagrams for dimyristoyl- and dielaidoyl-substituted PA-PC and PA-PE mixtures indicate that these species are readily miscible in the absence of calcium but phase-separate very extensively in the presence of high levels of calcium (30 mM). The limiting solubilities of PA (Ca2+) in liquid-crystalline PC or PE bilayers are .ltoreq. 10 and .apprx. 5 mol%, respectively, while .apprx. 20 mol% of PC or PE can be introduced into the "cochleate" phase of PA (Ca2+) before a distinct PC-rich (or PE-rich) phase appears. The kinetics of calcium-induced lateral phase separations were examined for dioleoyl- and dielaidoyl-substituted PA-PC unilamellar vesicles labeled with fluorescent (C12-NBD-acyl) PA or PC, whose fluorescence becomes partially quenched upon phase separation. Our results indicate that, for the PA-PC system, lateral phase separation is very rapid (.ltorsim. 1 s) after calcium addition and develops partially (possibly in only one face of the bilayer) when calcium is present only on one side of the bilayer. Moreover, phase separations can develop at a rate faster than that of vesicle diffusion when calcium is added to dilute suspensions of vesicles, suggesting that interbilayer contacts are not essential to promote phase separations.

This publication has 24 references indexed in Scilit: