Abstract
Separating and reattaching flows in a two-dimensional compression corner were investigated experimentally at a Mach number of 7·0 and Reynolds numbers (based on the distance from the leading edge to the corner) of 4·75 × 106, 9·51 × 106and 1·55 × 107. Heat-transfer measurements and Pitot traverses in the upstream boundary layer showed that the boundary layer had become fully turbulent at the start of the interactions. Increases in the Reynolds number gave increases in the length of separated shear layers and decreases in the corner angle required for incipient, separation. The reattachment pressure coefficients gave good agreement with the criterion of Batham (1969).