Characterizing reference locality in the WWW

Abstract
In this paper we propose models for both temporal and spatial locality of reference in streams of requests am'v- ing at Web servers. We show that simple models based on document popularity alone are insuficient for cap- turing either temporal or spatial locality. Instead, we rely on an equivalent, but numerical, representation of a reference stream: a stack distance trace. We show that temporal locality can be characterized by the marginal distribution of the stack distance trace, and we propose models for typical distributions and compare their cache performance to our traces. We also show that spatial Io- cality an a reference stream can be characterized using the notion of self-similarity. Self-similarity describes long- range correlations an the dataset, which is a property that previous researchers have found hard to incorporate into synthetic reference strings. We show that stack dis- tance strings appear to be stongly self-similar, and we provide measurements of the degree of self-similarity an our traces. Finally, we discuss methods for generating synthetic Web traces that exhibit the properties of tem- poral and spatial locality that we measured an our data.

This publication has 16 references indexed in Scilit: