Nucleolar localization signals of Box H/ACA small nucleolar RNAs

Abstract
The two major families of small nucleolar RNAs (snoRNAs), Box C/D and Box H/ACA, are generated in the nucleoplasm and transported to the nucleolus where they function in rRNA processing and modification. We have investigated the sequences involved in the intranuclear transport of Box H/ACA snoRNAs by assaying the localization of injected fluorescent RNAs in Xenopus oocyte nuclear spreads. Our analysis of U17, U64 and U65 has revealed that disruption of either of the conserved sequence elements, Box H or Box ACA, eliminates nucleolar localization. In addition, the stem present at the base of the 3′ hairpin is required for efficient nucleolar localization of U65. Fragments or rearrangements of U65 that consist of Box H and Box ACA flanking either the 5′ or 3′ hairpin are targeted to the nucleolus. The targeting is dependent on the presence of the Box sequences, but not on their orientation. Our results indicate that in each of the two major families of snoRNAs, a motif composed of the signature conserved sequences and an adjacent structural element that tethers the sequence elements directs the nucleolar localization of the RNAs. We demonstrate that telomerase RNA is also targeted to the nucleolus by a Box ACA‐dependent mechanism.