The superior vestibular nucleus: An intracellular hrp study in the cat. I. Vestibulo‐ocular neurons

Abstract
Superior vestibular neurons were penetrated with horseradish perox‐idase (HRP)‐loaded glass microelectrodes in anesthetized cats. Responses to electrical stimulation of the oculomotor complex and the vestibular nerves were characterized and selected neurons were injected with HRP. Neurons antidromically activated by oculomotor complex stimulation were generally monosynaptically excited by the ipsilateral vestibular nerve. Notable was the absence of strong commissural inhibition by stimulation of the contra‐lateral vestibular nerve. Light microscopy of antidromically identified injected cells demonstrated that these cells are predominantly located at the central levels of the superior vestibular nucleus along the incoming vestibular nerve fibers but a few are found at more caudal levels. Cell bodies, elongated or pyramidal, are mainly medium‐sized to large (30–50 μm). Dendritic trees extend in a plane at an acute angle to the collaterals of the vestibular nerve fibers. Dendrites remain within the nuclear territory and generally display an isodendritic branching pattern. Dendritic spines and appendages are mainly distributed on secondary and distal dendrites. A few terminal enlargements similar to growth cones are observed in these neurons. Axons of these neurons project rostrally via the medial longitudinal fasciculus, while a minor projection via the brachium conjunctivum is also found. Axon collaterals, when present, originate in the nucleus itself and in the pontine reticular formation.