Abstract
1. The activity in identical motoneurones innervating leg muscles of the three thoracic segments of the cockroach has been recorded in (a) normal walking animals, (b) walking animals after lesions to the nervous system and/or amputation of the mesothoracic legs, and (c) restrained de-afferented preparations. 2. The phase of levator motoneurone burst activity of the mesothoracic leg in the metathoracic cycle is almost 0·5 for all walking speeds above 2 steps/sec, confirming that a tripod gait is used at all but the slowest speeds. 3. The burst-generating systems in each segment are centrally coupled because in de-afferented preparations there is a tendency for the bursts in the mesothoraci segment to begin near the end of the metathoracic bursts, and vice versa. 4. Sensory input from leg receptors is also important in co-ordinating stepping movements of the different legs since (a) there are some differences in motoneurone activity of de-afferented and walking preparations, and (b) amputation of the mesothoracic legs at the trochanter leads to an immediate change in the co-ordination of the remaining four legs. 5. It is proposed that two mechanisms are important in co-ordinating leg movements in a slow walking cockroach (a) mutual inhibition between levator burst-generating systems in adjacent ipsilateral legs, and (b) an inhibitory reflex pathway from the campaniform sensilla of the trochanter to the burst-generating system of each leg. The second of these two mechanisms may become less important as the walking speed increases.

This publication has 15 references indexed in Scilit: