Abstract
We recently described a soluble cell-free system derived from monkey cells that is capable of replicating exogenous plasmid DNA molecules containing the simian virus 40 (SV40) origin of replication (J.J. Li, and T.J. Kelly, Proc. Natl. Acad. Sci. U.S.A. 81:6973-6977, 1984). Replication in the system is completely dependent upon the addition of the SV40 large T antigen. In this report we describe additional properties of the in vitro replication reaction. Extracts prepared from cells of several nonsimian species were tested for the ability to support origin-dependent replication in the presence of T antigen. The activities of extracts derived from human cell lines HeLa and 293 were approximately the same as those of monkey cell extracts. Chinese hamster ovary cell extracts also supported SV40 DNA replication in vitro, but the extent of replication was approximately 1% of that observed with human or monkey cell extracts. No replication activity was detectable in extracts derived from BALB/3T3 mouse cells. The ability of these extracts to support replication in vitro closely parallels the ability of the same cells to support replication in vivo. We also examined the ability of various DNA molecules containing sequences homologous to the SV40 origin to serve as templates in the cell-free system. Plasmids containing the origins of human papovaviruses BKV and JCV replicated with an efficiency 10 to 20% of that of plasmids containing the SV40 origin. Plasmids containing Alu repeat sequences (BLUR8) did not support detectable DNA replication in vitro. Circular DNA molecules were found to be the best templates for DNA replication in the cell-free system; however, linear DNA molecules containing the SV40 origin also replicated to a significant extent (10 to 20% of circular molecules). Finally, electron microscopy of replication intermediates demonstrated that the initiation of DNA synthesis in vivo takes place at a unique site corresponding to the in vivo origin and that replication is bidirectional. These findings provide further evidence that replication in the cell-free system faithfully mimics SV40 DNA replication in vivo.