GluR2 protein-protein interactions and the regulation of AMPA receptors during synaptic plasticity

Abstract
AMPA-type glutamate receptors mediate most fast excitatory synaptic transmissions in the mammalian brain. They are critically involved in the expression of long-term potentiation and long-term depression, forms of synaptic plasticity that are thought to underlie learning and memory. A number of synaptic proteins have been identified that interact with the intracellular C-termini of AMPA receptor subunits. Here, we review recent studies and present new experimental data on the roles of these interacting proteins in regulating the AMPA receptor function during basal synaptic transmission and plasticity.