A mutation that increases a novel calcium-activated potassium conductance ofParamecium tetraurelia

Abstract
Under two-electrode voltage clamp, a mutant ofP. tetraurelia, restless (rst/rst), showed a large increase in induced current and an outward tail current when compared to the wildtype cell for hyperpolarizing voltage steps. An increase in the induced and tail currents is also observed for depolarizing voltage steps. The larger current during voltage steps and tail in the mutant were eliminated by the use of CsCl-filled electrodes and tetraethylammonium ion (TEA+) in the bath solution, characterizing the lesion as affecting a K+ conductance. Ionophoretic injection of ethylene glycol bis-(beta-aminoethyl ether) n,n,n′,n-tetraacetic acid (EGTA) to buffer internal Ca2+ concentration reduced the increased K+ current and tail of therestless cell, indicating Ca2+ activation of the K+ current. Time course and amplitude of remaining currents after blockage of K+ conductances with Cs+ and TEA+ were similar in wild-type andrestless cells suggesting norestless defect in entry of calcium. The Ca2+-activated sodium current was similar in the mutant to that in wild type arguing against a defect in calcium regulation activating the K+ channel in therestless cell. We conclude that therestless mutation alters a Ca2+-activated potassium conductance other than the one previously described. The multiplicity of Ca2+-activated potassium conductances inParamecium is discussed.