Interference in a spherical phase space and asymptotic behavior of the rotation matrices

Abstract
We extend the interference in the phase-space algorithm of Wheeler and Schleich [W. P. Schleich and J. A. Wheeler, Nature 326, 574 (1987)] to the case of a compact, spherical topology in order to discuss the large j limits of the angular momentum marginal probability distributions. These distributions are given in terms of the standard rotation matrices. It is shown that the asymptotic distributions are given very simply by areas of overlap in the classical spherical phase-space parametrized by the components of angular momentum. The results indicate the very general validity of the interference in phase-space concept for computing semiclassical limits in quantum mechanics.