Turbulent flow and heat transfer in pipes with buoyancy effects

Abstract
A finite-difference procedure, is employed to predict the turbulent flow and heat transfer in horizontal, inclined and vertical pipes when influenced by buoyancy. The flow is treated as parabolic; and the turbulence model used involves the solution of two differential equations, one for the kinetic energy of turbulence and the other for its dissipation rate. Results are presented for the velocity and temperature fields, and the associated flow-resistance and heat-transfer coefficients. The predictions for horizontal and vertical pipes have been compared with the available experimental results, and the agreement obtained is good.