Combined effects of cold and somatostatin on glucose kinetics in dogs

Abstract
The role of the endocrine pancreas in glucose production (Ra), utilization (Rd), and metabolic clearance (R'd) was investigated during acute exposure to cold in normal normothermic dogs. Two ambient temperatures (TaN=+25‡ C and TaC=−21‡ C) were selected. At TaC, metabolic rate and glucose turnover of the shivering dogs were 4.3 and 2.4 times, respectively, higher than in dogs resting at TaN. As compared with the pre-experimental period, somatostatin infusion at TaN induced a 25% (arterial) and 34% (portal) glucagon deficiency, while insulin concentration dropped by 59% (arterial) and 74% (portal). Similar values were obtained at TaC for glucagon (39% arterial and 47% portal) and for insulin (52% arterial and 56% portal). At TaN, these simultaneous hormonal alterations provoked a slight reduction in plasma glucose concentration which levelled down to 4.4 mM. This reduction was due to a decrease in Ra, followed by a parallel decrease in Rd whereas R'd remained unchanged. At TaC, plasma glucose concentration dropped to the same level but quickly rose again during somatostatin infusion. This rise was due to a larger reduction in Rd than in Ra, accompanied by an abrupt fall in R'd. This reduction in R'd appears to be an important mechanism able to restore euglycemia during global pancreatic hormone deficiency in cold exposed dogs.