OBLIQUELY STRIATED MUSCLE

Abstract
Body muscle cells of the bloodworm Glycera, a polychaete annelid, were studied by electron microscopy and compared with muscle cells of the more slowly acting nematode Ascaris, which have been described previously. Both muscles are obliquely striated. The predominant type of bloodworm fiber is characterized by a prominent transversely oriented sarcoplasmic reticulum with numerous dyads at the surface of each cell. Thick myofilaments are ∼3 µ long and overlap along ∼60% of their length in extended fibers and ∼80% in shortened fibers. There is virtually no endomysium and very little intracellular skeleton, and the cells are attached by desmosomes to one another rather than to connective tissue. Dense bodies are absent from the fibers and in their place are Z lines, which are truly linear rather than planar. Scattered among the predominant fibers are others, less orderly in arrangement, in which the SR is much less prominent and in which the thick filaments are thicker and longer and overlap to an even smaller degree. It is suggested that physiological differences between bloodworm and Ascaris muscles derive from differences in the proportion of series to parallel linkages between the contractile elements, differences in the amount and disposition of the SR, and differences in the impedance to shear within the myofibrils.