The effects of 5'-capping, 3'-polyadenylation and leader composition upon the translation and stability of mRNA in a cell-free extract derived from the yeast Saccharomyces cerevisiae

Abstract
A new modular expression system was developed to direct the in vitro synthesis of defined transcripts that were used as templates for translation in yeast cell-free extracts. The system was used to examine the influence of 5'-capping, 3'-polyadenylation and leader sequence upon the translation and stability of the synthetic Tn9 cat (chloramphenicol acetyl transferase), yeast PGK (phosphoglycerate kinase) and yeast HSP26 (heat-shock protein 26) mRNAs. The addition of a methylated cap (m7Gppp) or of a poly(A) tail enhanced translation and stabilized the mRNA. The dependence of translation upon capping was reduced in the presence of the HSP26 leader sequence. This may indicate the existence of a translational mechanism that enhances cap-independent translation. The enhancement of the translation and stability of mRNA was relatively insensitive to changes in the position of the poly(A) tail relative to the reading frame.