Methodological Underestimation of Oceanic Nitrogen Fixation Rates

Top Cited Papers
Open Access
Abstract
The two commonly applied methods to assess dinitrogen (N2) fixation rates are the 15N2-tracer addition and the acetylene reduction assay (ARA). Discrepancies between the two methods as well as inconsistencies between N2 fixation rates and biomass/growth rates in culture experiments have been attributed to variable excretion of recently fixed N2. Here we demonstrate that the 15N2-tracer addition method underestimates N2 fixation rates significantly when the 15N2 tracer is introduced as a gas bubble. The injected 15N2 gas bubble does not attain equilibrium with the surrounding water leading to a 15N2 concentration lower than assumed by the method used to calculate 15N2-fixation rates. The resulting magnitude of underestimation varies with the incubation time, to a lesser extent on the amount of injected gas and is sensitive to the timing of the bubble injection relative to diel N2 fixation patterns. Here, we propose and test a modified 15N2 tracer method based on the addition of 15N2-enriched seawater that provides an instantaneous, constant enrichment and allows more accurate calculation of N2 fixation rates for both field and laboratory studies. We hypothesise that application of N2 fixation measurements using this modified method will significantly reduce the apparent imbalances in the oceanic fixed-nitrogen budget.