Contractile protein dynamics of myofibrils in paired adult rat cardiomyocytes

Abstract
The purpose of this study was to determine how quickly contractile proteins are incorporated into the myofibrils of freshly isolated cardiomyocytes and to determine whether there are regions of the cells that are more dynamic than others in their ability to incorporate the proteins. Paired cardiomyocytes joined at intercalated discs and single cells were isolated from adult rats, and microinjected 3 hours later with fluorescently labeied actin, alpha-actinin, myosin light chains, and vinculin. The cells were fixed and permeabilized at various period, 5 seconds and longer, after microinjection. Actin became incorporated throughout the I-Bands in as short a time as 5 seconds. The free edges of the cells, which were formerly intercalated discs, exhibited concentrations of actin greater than that incorporated in the I-Bands. This extra concentration of actin was not detected, however, at intact intercalated discs connecting paired cells. Alpha-actinin was incorporated immediately into Z-Bands and intercalated discs. Vinculin, also, was localized at the Z-Bands and at intercalated discs, but in contrast to alpha-actinin, there was a higher concentration of vinculin in the region of the intact intercalated discs. Both alpha-actinin and vinculin were concentrated at the free ends of the cells that were formerly parts of intercalated discs. Myosin light chains were observed to incorporate into the A-Bands in periods as short as 5 seconds. These results suggest that the myofibrils of adult cardiomyocytes may be capable of rapid isoform transitions along the length of the myofibrils. The rapid accumulation of fluorescent actin, alpha-actinin, and vinculin in membrane sites that were previously parts of intercalated discs, may reflect the response to locomotory activity that is initiated in these areas as cells spread in culture. A similar response after an injury in the intact heart could allow repair to occur.