Natural Mutations in the Receptor Binding Domain of Spike Glycoprotein Determine the Reactivity of Cross-Neutralization between Palm Civet Coronavirus and Severe Acute Respiratory Syndrome Coronavirus
- 1 May 2007
- journal article
- research article
- Published by American Society for Microbiology in Journal of Virology
- Vol. 81 (9), 4694-4700
- https://doi.org/10.1128/jvi.02389-06
Abstract
The severe acute respiratory syndrome (SARS) outbreak of 2002 and 2003 occurred as a result of zoonotic transmission. Coronavirus (CoV) found in naturally infected palm civet (civet-CoV) represents the closest genetic relative to SARS-CoV, but the degree and the determinants of cross-neutralization among these viruses remain to be investigated. Studies indicate that the receptor binding domain (RBD) of the SARS-CoV spike (S) glycoprotein contains major determinants for viral entry and neutralization. We aim to characterize the impact of natural mutations within the RBDs of civet-CoVs on viral entry and cross-neutralization. In this study, the S glycoprotein genes were recovered from naturally infected civets in central China (Hubei province), extending the geographic distribution of civet-CoV beyond the southeastern province of Guangdong. Moreover, pseudoviruses generated in our laboratory with four civet S genes, each with a distinct RBD, infected cells expressing human receptor angiotensin-converting enzyme 2, but with 90 to 95% less efficiency compared to that of SARS-CoV. These four civet S genes were also constructed as DNA vaccines to immunize mice. Immunized sera elicited against most civet S glycoproteins displayed potent neutralizing activities against autologous viruses but were much less efficient (50% inhibitory concentration, 20- to 40-fold) at neutralizing SARS-CoV and vice versa. Convalescence-phase sera from humans were similarly ineffective against the dominant civet pseudovirus. Our findings suggest that the design of SARS vaccine should consider not only preventing the reemergence of SARS-CoV but also providing cross-protection, thus interrupting zoonotic transmission of a group of genetically divergent civet CoVs of broad geographic origin.Keywords
This publication has 31 references indexed in Scilit:
- Vaccine Efficacy in Senescent Mice Challenged with Recombinant SARS-CoV Bearing Epidemic and Zoonotic Spike VariantsPLoS Medicine, 2006
- Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferretsThe Lancet, 2004
- Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes miceProceedings of the National Academy of Sciences, 2004
- A DNA vaccine induces SARS coronavirus neutralization and protective immunity in miceNature, 2004
- Molecular Evolution of the SARS Coronavirus During the Course of the SARS Epidemic in ChinaScience, 2004
- Effects of a SARS-associated coronavirus vaccine in monkeysThe Lancet, 2003
- Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirusNature, 2003
- Prevalence of IgG antibody to SARS-associated coronavirus in animal traders--Guangdong Province, China, 2003.2003
- Isolation and Characterization of Viruses Related to the SARS Coronavirus from Animals in Southern ChinaScience, 2003
- Coronavirus as a possible cause of severe acute respiratory syndromeThe Lancet, 2003