Abstract
Primary cell walls from exponentially growing cell-suspension cultures of spinach contained ferulic acid and p-coumaric acid esterified with galactopyranose and arabinopyranose residues of polysaccharides. The feruloylated polysaccharides behaved in exactly the same way as total cell-wall pectin with respect to (1) extraction with chelating agents, (2) extraction by trans-elimination degradation, (3) extraction with mild acid, and (4) electrophoretic separation into acidic and neutral species. Partial digestion of cell walls with Driselase, under conditions which specifically inhibited galactanase and galactosidases yielded galactose-containing feruloyl tri- to pentasaccharides, in all of which the feruloyl group was on the non-reducing terminus. Larger feruloyl oligosaccharides were also found, some of which were acidic. Partial acid-hydrolysis of cell walls gave a homologous series of feruloyl oligosaccharides, probably with the structure Feruloyl-arabinopyranose-(arabinofuranose)n-arabinose where n=0–7. Evidence is presented that the arabinose chain was unbranched, with the feruloyl group on the nonreducing terminus. It is suggested that acidic and neutral pectins carry ferulic acid on the non-reducing termini of the neutral arabinose- and/or galactose-containing domains. The pectins carry approximately one feruloyl residue per 60 sugar residues. Possible rôles of feruloyl pectin in the regulation of cell expansion, in disease resistance, and in the initiation of lignification are discussed.