Basic fibroblast growth factor protects cerebellar neurons in primary culture from NMDA and non‐NMDA receptor mediated neurotoxicity

Abstract
We have investigated the ability of bFGF to protect cerebellar neurons from neurotoxicity by excitatory amino acids. We have found that preincubation with 1-2.5 nM bFGF for 1-6 days significantly protected neurons from excitotoxic damage via NMDA receptors as well as ionotropic non-NMDA receptors. bFGF neuroprotection appeared not to be dependent upon neuronal differentiation and was not mimicked by other neurotrophins including BDNF, NT-3 and NGF. A greater rise in extracellular calcium-dependent cGMP formation, following either depolarization or excitatory amino acid receptor activation was observed in bFGF-pretreated neurons. We suggest that neuroprotection from excitotoxicity following bFGF treatment may be associated to the modulation of neurochemical pathways dependent upon extracellular calcium influx.

This publication has 40 references indexed in Scilit: