Abstract
Two independent sets of meteorological reanalyses are used to investigate relationships between the tropical sea surface temperature (SST) and the large-scale vertical motion of the atmosphere for spatial and seasonal variations, as well as for El Niño/La Niña episodes of 1987–88. Supergreenhouse effect (SGE) situations are found to be linked to the occurrence of enhanced large-scale rising motion associated with increasing SST. In regions where the large-scale atmospheric motion is largely decoupled from the local SST due to internal or remote forcings, the SGE occurrence is weak. On seasonal and interannual timescales, such regions are found mainly over equatorial regions of the Indian Ocean and western Pacific, especially for SSTs exceeding 29.5°C. In these regions, the activation of feedback processes that regulate the ocean temperature is thus likely to be more related to the large-scale remote processes, such as those that govern the monsoon circulations and the low-frequency variability of... Abstract Two independent sets of meteorological reanalyses are used to investigate relationships between the tropical sea surface temperature (SST) and the large-scale vertical motion of the atmosphere for spatial and seasonal variations, as well as for El Niño/La Niña episodes of 1987–88. Supergreenhouse effect (SGE) situations are found to be linked to the occurrence of enhanced large-scale rising motion associated with increasing SST. In regions where the large-scale atmospheric motion is largely decoupled from the local SST due to internal or remote forcings, the SGE occurrence is weak. On seasonal and interannual timescales, such regions are found mainly over equatorial regions of the Indian Ocean and western Pacific, especially for SSTs exceeding 29.5°C. In these regions, the activation of feedback processes that regulate the ocean temperature is thus likely to be more related to the large-scale remote processes, such as those that govern the monsoon circulations and the low-frequency variability of...