The Cost and Impact of Scaling Up Pre-exposure Prophylaxis for HIV Prevention: A Systematic Review of Cost-Effectiveness Modelling Studies

Top Cited Papers
Open Access
Abstract
Cost-effectiveness studies inform resource allocation, strategy, and policy development. However, due to their complexity, dependence on assumptions made, and inherent uncertainty, synthesising, and generalising the results can be difficult. We assess cost-effectiveness models evaluating expected health gains and costs of HIV pre-exposure prophylaxis (PrEP) interventions. We conducted a systematic review comparing epidemiological and economic assumptions of cost-effectiveness studies using various modelling approaches. The following databases were searched (until January 2013): PubMed/Medline, ISI Web of Knowledge, Centre for Reviews and Dissemination databases, EconLIT, and region-specific databases. We included modelling studies reporting both cost and expected impact of a PrEP roll-out. We explored five issues: prioritisation strategies, adherence, behaviour change, toxicity, and resistance. Of 961 studies retrieved, 13 were included. Studies modelled populations (heterosexual couples, men who have sex with men, people who inject drugs) in generalised and concentrated epidemics from Southern Africa (including South Africa), Ukraine, USA, and Peru. PrEP was found to have the potential to be a cost-effective addition to HIV prevention programmes in specific settings. The extent of the impact of PrEP depended upon assumptions made concerning cost, epidemic context, programme coverage, prioritisation strategies, and individual-level adherence. Delivery of PrEP to key populations at highest risk of HIV exposure appears the most cost-effective strategy. Limitations of this review include the partial geographical coverage, our inability to perform a meta-analysis, and the paucity of information available exploring trade-offs between early treatment and PrEP. Our review identifies the main considerations to address in assessing cost-effectiveness analyses of a PrEP intervention—cost, epidemic context, individual adherence level, PrEP programme coverage, and prioritisation strategy. Cost-effectiveness studies indicating where resources can be applied for greatest impact are essential to guide resource allocation decisions; however, the results of such analyses must be considered within the context of the underlying assumptions made. Please see later in the article for the Editors' Summary Every year approximately 2.5 million people are infected with HIV, the virus that causes AIDS. Behavioral strategies like condom use and reduction of sexual partners have been the hallmarks of HIV prevention efforts. However, biological prevention measures have also recently been shown to be effective. These include male circumcision, treatment as prevention (treating HIV-infected people with antiretroviral drugs to reduce transmission), and pre-exposure prophylaxis (PrEP), where people not infected with HIV take antiretroviral drugs to reduce the probability of transmission. Strategies such as PrEP may be viable prevention measure for couples in long-term relationships where one partner is HIV-positive and the other is HIV-negative (HIV serodiscordant couples) or groups at higher risk of HIV infection, such as men who have sex with men, and injection drug users. The findings from recent clinical trials that demonstrate PrEP can reduce HIV transmission have led to important policy discussions and in the US, Southern Africa, and the UK new clinical guidelines have been developed on the use of PrEP for the prevention of HIV infection. For those countries that are considering whether to introduce PrEP into HIV prevention programs, national policy and decision makers need to determine potential costs and health outcomes. Cost-effectiveness models—mathematical models that simulate cost and health effects of different interventions—can help inform such decisions. However, the cost-effectiveness estimates that could provide guidance for PrEP programs are dependent on, and limited by, the assumptions included in the models, which can make their findings difficult to generalize. A systematic comparison of published cost-effectiveness models of HIV PrEP interventions would be useful for policy makers who are considering introducing PrEP intervention programs. The researchers performed a systematic review to identify published cost-effectiveness models that evaluated the health gains and costs of HIV PrEP interventions. Systematic reviews attempt to identify, appraise, and synthesize all the empirical evidence that meets pre-specified eligibility criteria to answer a given research question by using explicit methods aimed at minimizing bias. By searching databases the authors identified 13 published studies that evaluated the impact of PrEP in different populations (heterosexual couples, men who have sex with men, and injection drug users) in different geographic settings, which included Southern Africa, Ukraine, US, and Peru. The authors identified seven studies that assessed the introduction of PrEP into generalized HIV epidemics in Southern Africa. These studies suggest that PrEP may be a cost effective intervention to prevent heterosexual transmission. However, the authors note that funding PrEP while other cost-effective HIV prevention methods are underfunded in this setting may have high opportunity costs. The authors identified five studies where PrEP was introduced for concentrated epidemics among men who have sex with men (four studies in the US and one in Peru). These studies suggest that PrEP may have a substantial impact on the HIV epidemic but may not be affordable at current drug prices. The authors also identified a single study that modeled the introduction of PrEP for people who inject drugs in the Ukraine, which found PrEP not to be cost effective. In all settings the price of antiretroviral drugs was found to be a limiting factor in terms of affordability of PrEP programs. Behavioral changes and adherence to PrEP were estimated to have potentially significant impacts on program effectiveness but the emergence of drug resistance or PrEP-related toxicity did not significantly affect cost-effectiveness estimates. Several PrEP prioritization strategies were explored in included studies and delivering PrEP to populations at highest risk of HIV exposure was shown to improve cost-effectiveness estimates. However, the extra costs of identifying and engaging with high-risk populations were not taken into consideration. The authors note that the geographic coverage of identified studies was limited and that the findings are very dependent on the setting which limits generalizability. These findings suggest that PrEP could be a cost-effective tool to reduce new HIV infections in some settings. However, the cost-effectiveness of PrEP is dependent upon cost, the epidemic context, program coverage and prioritization strategies, participants' adherence to the drug regimen, and PrEP efficacy estimates. These findings will aid decision makers quantify and compare the reductions in HIV incidence that could be achieved by implementing a PrEP program. Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001401.