Abstract
Some poxviruses and their mammalian hosts encode homologous proteins that bind interleukin-18 (IL-18) with high affinity and inhibit IL-18-mediated immune responses. MC54L, the IL-18 binding protein of the human poxvirus that causes molluscum contagiosum, is unique in having a C-terminal tail of nearly 100 amino acids that is dispensable for IL-18 binding. When recombinant MC54L was expressed and purified via a C-terminal six-histidine tag, a shorter fragment was detected in addition to the full-length protein. This C-terminal fragment resulted from the cleavage of MC54L by cellular furin, as it was greatly diminished when furin was specifically inhibited or when a furin-deficient cell line was used for expression. Furthermore, the N- and C-terminal fragments of MC54L were generated by cleavage of the recombinant protein with furin in vitro. The furin cleavage site was mapped within a 32-amino-acid segment that is C terminal to the IL-18 binding domain. Full-length MC54L, but not the N-terminal IL-18 binding fragment, bound to cells and to purified heparin and other glycosaminoglycans that are commonly found on the cell surface and in the extracellular matrix. MC54L bound to heparin with a nanomolar Kd and could simultaneously bind to IL-18. Their different glycosaminoglycan and cell binding properties may allow the long and short forms of MC54L to inactivate IL-18 near the site of infection and at more distal locations, respectively.