Opposite Effects of the Acute Promyelocytic Leukemia PML-Retinoic Acid Receptor α (RARα) and PLZF-RARα Fusion Proteins on Retinoic Acid Signalling
Open Access
- 1 August 1997
- journal article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 17 (8), 4859-4869
- https://doi.org/10.1128/mcb.17.8.4859
Abstract
Fusion proteins involving the retinoic acid receptor alpha (RAR alpha) and the PML or PLZF nuclear protein are the genetic markers of acute promyelocytic leukemias (APLs). APLs with the PML-RAR alpha or the PLZF-RAR alpha fusion protein are phenotypically indistinguishable except that they differ in their sensitivity to retinoic acid (RA)-induced differentiation: PML-RAR alpha blasts are sensitive to RA and patients enter disease remission after RA treatment, while patients with PLZF-RAR alpha do not. We here report that (i) like PML-RAR alpha expression, PLZF-RAR alpha expression blocks terminal differentiation of hematopoietic precursor cell lines (U937 and HL-60) in response to different stimuli (vitamin D3, transforming growth factor beta1, and dimethyl sulfoxide); (ii) PML-RAR alpha, but not PLZF-RAR alpha, increases RA sensitivity of hematopoietic precursor cells and restores RA sensitivity of RA-resistant hematopoietic cells; (iii) PML-RAR alpha and PLZF-RAR alpha have similar RA binding affinities; and (iv) PML-RAR alpha enhances the RA response of RA target genes (those for RAR beta, RAR gamma, and transglutaminase type II [TGase]) in vivo, while PLZF-RAR alpha expression has either no effect (RAR beta) or an inhibitory activity (RAR gamma and type II TGase). These data demonstrate that PML-RAR alpha and PLZF-RAR alpha have similar (inhibitory) effects on RA-independent differentiation and opposite (stimulatory or inhibitory) effects on RA-dependent differentiation and that they behave in vivo as RA-dependent enhancers or inhibitors of RA-responsive genes, respectively. Their different activities on the RA signalling pathway might underlie the different responses of PML-RAR alpha and PLZF-RAR alpha APLs to RA treatment. The PLZF-RAR alpha fusion protein contains an approximately 120-amino-acid N-terminal motif (called the POZ domain), which is also found in a variety of zinc finger proteins and a group of poxvirus proteins and which mediates protein-protein interactions. Deletion of the PLZF POZ domain partially abrogated the inhibitory effect of PLZF-RAR alpha on RA-induced differentiation and on RA-mediated type II TGase up-regulation, suggesting that POZ-mediated protein interactions might be responsible for the inhibitory transcriptional activities of PLZF-RAR alpha.Keywords
This publication has 52 references indexed in Scilit:
- Retinoid receptors in transcriptional regulationCurrent Opinion in Genetics & Development, 1996
- The RXR heterodimers and orphan receptorsCell, 1995
- Sequence and Characterization of a Coactivator for the Steroid Hormone Receptor SuperfamilyScience, 1995
- A transcriptional co-repressor that interacts with nuclear hormone receptorsNature, 1995
- PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors.Proceedings of the National Academy of Sciences, 1994
- Retinoic acid regulates aberrant nuclear localization of PML-RARα in acute promyelocytic leukemia cellsCell, 1994
- Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signallingNature, 1992
- Retinoid X receptor is an auxiliary protein for thyroid hormone and retinoic acid receptorsNature, 1992
- The PML-RARα fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RARCell, 1991
- Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PMLCell, 1991